QfE-Coverpic

QUESTforENERGY

Dr. Michael Zürch - leader of research group. Group is part of the campaign MAKE THE PLANET GREAT AGAIN, supported by DAAD and BMBF
QfE-Coverpic
Foto: Kalla Pavan

The goal of the research project Quantifying Ultrafast non-Equilibrium dynamicS in semiconducTor quantum nanomaterials for nExt geNEration eneRGY Materials - QUESTforENERGY - is the time-resolved observation and control of the carrier and lattice dynamics in two-dimensional semiconductor materials driven out of equilibrium at femtosecond time scales. This interdisciplinary program interfaces between Material Science, Physical Chemistry, Optics and fundamental Physics. Studying the ultrafast photoresponse and directly observing the excitation followed by thermalization of the systems allows to predict fundamental limitations for devices, observing new quantum phases with potentially even enhanced properties and providing input for advanced modeling of these materials.

The QUESTforENERGY project is funded by the Federal Ministry of Education and Research (BMBF) under the "Make our Planet Great Again - German Research Initiative", grant number 57427209, implemented by the German Academic Exchange Service (DAAD).

Quest-for-Light Bild 2
Quest-for-Light Bild 2
Foto: M. Zürch

(a) Typical pump-probe scheme, here in germanium as example. A VIS-NIR pulse photoexcites the semiconductor, initiating valence to conduction band transitions. A time-delayed broadband XUV pulse probes the transient state of the material by promoting a core-level electron to unoccupied states. (b) Broadband attosecond pulse spectra are shown that can be produced across a wide spectral range, giving core-level access to dynamics in various materials. The energy separations allow probing different atomic species separately in semiconductor compounds. (c) Time-resolved XUV absorption spectroscopy allows measuring carrier populations, electronic effects such as Coulomb screening, lattice expansions (phonons) as well as many-body effects (eg carrier-carrier scattering),

Quest-for-Light Bild 1
Quest-for-Light Bild 1
Foto: M. Zürch

Core element is a 30 fs, 7mJ Ti: Sa femtosecond laser system operating at 1 kHz. About 2 mJ of pulse energy will be compressed to the few-cycle level (4 fs) in a hollow core fiber. About 90% of the compressed pulse will be used to generate broadband XUV probe pulses (20 eV ... 150 eV) and 10% will be used to photoexcite the sample. The remaining 5 mJ will be converted into the near-infrared using an optical parametric amplifier followed by a difference frequency unit. This will generate tunable femtosecond pulses with low photon energies (250 meV to 950 meV).

We are constantly looking for highly motivated and skilled team members. There are also opportunities to complete internships, bachelor and master thesis within the project. If you are interested, please send your letter of motivation and CV to: michael.zuerch@uni-jena.de

  1. Spielmann, Christian, Univ.-Prof. Dr. host-director Abbe Center of Photonics Lehrstuhl für Quantenelektronik
  2. Mallick, Monalisa scientist Lehrstuhl für Quantenelektronik

Meet the Team

QfE Team
QfE Team
Foto: QfE Team

Former students

  • Don Sajan
  • Arni Pratiwi
  • Rajesh Thotakura

 

Publications

  1. B. Buades, A. Picon, E. Berger, I. Leon, N. Di Palo, S. L. Cousin, C. Cocchi, E. Pellegrin, J. H. Martin, S. Manas-Valero, E. Coronado, T. Danz, C. Draxl, M. Uemoto, K. Yabana, M. Schultze, S. Wall, M. Zuerch, and J. Biegert “”Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES”, Applied Physics Reviews 8, 011408 (2021). .https://doi.org/10.1063/5.0020649Externer Link 
  2. R. Hollinger, P. Herrmann, V. Korolev, M. Zapf, V. Shumakova, R. Röder, I. Uschmann, A. Pugžlys, A, Baltuška, M. Zürch, C. Ronning, C. Spielmann, and D. Kartashov, “Polarization Dependent Excitation and High Harmonic Generation from Intense Mid-IR Laser Pulses in
    ZnO”, Nanomaterials , 11, 4, (2021). https://dx.doi.org/10.3390/nano11010004Externer Link 
  3. F. Tuitje, P. Martínez Gil, T. Helk, J. Gautier, F. Tissandier, J.-P.Goddet, A. Guggenmos, U. Kleineberg, S. Sebban, E. Oliva, C. Spielmann, and M. Zürch. “Nonlinear Ionization Dynamics of Hot Dense Plasma Observed in a Laser-Plasma Amplifier”, Nature Light:
    Science and Applications, 9, 187 (2020). https://doi.org/10.1038/s41377-020-00424-2Externer Link 
  4. R. Géneaux, C.J. Kaplan, L. Yue, A. D. Ross, J. E. Bækhøj, P. M. Kraus, H. Chang, A. Guggenmos, M. Huang, M. Zürch, K. J. Schafer, D. M. Neumark, M. B. Gaarde, and S.R. Leone, “Attosecond Time-Domain Measurement of Core-Level-Exciton Decay in Magnesium Oxide”, Phys. Rev. Lett. 124, 207401 (2020)- doi: https://doi.org/10.1103/PhysRevLett.124.207401Externer Link 
  5. N. Geib, R. Hollinger, E. Haddad, P. Herrmann, F. Légaré, T. Pertsch, C. Spielmann, M. Zürch, and Falk Eilenberger, "Discrete dispersion scan setup for measuring few-cycle laser pulses in the mid-infrared," Opt. Lett. 45, 5295-5298 (2020). https://doi.org/10.1364/OL.403362Externer Link
  6. G. K. Tadesse, W. Eschen, R. Klas, M. Tschernajew, F. Tuitje, M. Steinert, M. Zilk, V. Schuster, M. Zürch, T. Pertsch, C. Spielmann, J. Limpert, J. Rothhardt. Wavelength-scale ptychographic coherent diffractive imaging using a high-order harmonic source, Scientific Reports 9, 1735 (2019) - doi: https://doi.org/10.1038/s41598-019-38501-1Externer Link
  7. C. J. Kaplan, P. M. Kraus, E. M. Gullikson, L. J. Borja, S. K. Cushing, M. Zürch, H.-T. Chang, D. M. Neumark, S. R. Leone. Retrieval of the complex-valued refractive index of germanium near the M4,5 absorption edge, Journal of the Optical Society of America B 6, 1716-1720 (2019) - doi: https://doi.org/10.1364/JOSAB.36.001716Externer Link
  8. T. Helk, M. Zürch , and C. SpielmannTowards single shot timeresolved microscopy using short wavelength table-top light sourcesStructural Dynamics 6, 010902 (2019)- doi: https://doi.org/10.1063/1.5082686Externer Link
  9. S. K. Cushing, A. Lee, I. J. Porter, L. M. Carneiro, H.-T. Chang, M. Zürch, S. R. LeoneDifferentiating Photoexcited Carrier and Phonon Dynamics in the Δ, L, and Γ Valleys of Si(100) with Transient Extreme Ultraviolet SpectroscopyJournal of Physical Chemistry C 123, 3343–3352 (2019)- doi: https://doi.org/10.1021/acs.jpcc.8b10887Externer Link
  10. S. K. Cushing, M. Zürch, P. M. Kraus, L. M. Carneiro, A. Lee, H.-T. Chang, C. J. Kaplan, S. R. LeoneHot phonon and carrier relaxation in Si(100) determined by transient extreme ultraviolet spectroscopyStructural Dynamics 5, 054302 (2018)- doi: https://doi.org/10.1063/1.5038015Externer Link.
  11. P. M. Kraus, M. Zürch, S. K. Cushing, D. M. Neumark, S. R. LeoneThe Ultrafast X-ray Spectrocopic Revolution in Chemical DynamicsNature Reviews Chemistry 2, 82-94 (2018)- doi: https://doi.org/10.1038/s41570-018-0008-8Externer Link
  12. C. J. Kaplan, P. M. Kraus, A. D. Ross, M. Zürch, S. K. Cushing, M. F. Jager, H.-T. Chang, E. M. Gullikson, D. M. Neumark, S. R. LeoneFemtosecond Tracking of Carrier Relaxation in Germanium with Extreme Ultraviolet Transient ReflectivityPhysical Review B 97, 205202 (2018)- doi: https://doi.org/10.1103/PhysRevB.97.205202Externer Link
  13. M. Zürch, H.-T. Chang, L. J. Borja, P. M. Kraus, S. Cushing, A. Gandman, C. J. Kaplan, M. H. Oh, J. S. Prell, D. Prendergast, C. D. Premmaraju, D. M. Neumark, and S. R. LeoneDirect and Simultaneous Observation of Ultrafast Electron and Hole Dynamics in GermaniumNature Communications 8:15734, 1-11 (2017)- doi: https://doi.org/10.1038/ncomms15734Externer Link
  14. M. Zürch, H.-T. Chang, P. M. Kraus, S. K. Cushing, L. J. Borja, A. Gandman, J. S. Prell, D. Prendergast, C. D. Premmaraju, D. M. Neumark, and S. R. LeoneCarrier Thermalization and Trapping in Silicon-Germanium Alloy Probed by Attosecond XUV Transient Absorption SpectroscopyStructural Dynamics 4 (4), 044029 (2017)- doi: https://doi.org/10.1063/1.4985056Externer Link