Publications

of the research group

175 Publikationen filtern

Die Publikationen filtern

Highlighted authors are members of the University of Jena.

  1. Chirped Pulses Meet Quantum Dots: Innovations, Challenges, and Future Perspectives

    Year of publicationPublished in:Advanced quantum technologies F. Kappe, Y. Karli, G. Wilbur, R. Krämer, S. Ghosh, R. Schwarz, M. Kaiser, T. Bracht, D. Reiter, S. Nolte, K. Hall, G. Weihs, V. Remesh
    Shaped laser pulses have been remarkably effective in investigating various aspects of light–matter interactions spanning a broad range of research. Chirped laser pulses exhibiting a time-varying frequency, or quadratic spectral phase, form a crucial category in the group of shaped laser pulses. This type of pulses have made a ubiquitous presence from spectroscopic applications to developments in high-power laser technology, and from nanophotonics to quantum optical communication, ever since their introduction. In the case of quantum technologies recently, substantial efforts are being invested toward achieving a truly scalable architecture. Concurrently, it is important to develop methods to produce robust photon sources. In this context, semiconductor quantum dots hold great potential, due to their exceptional photophysical properties and on-demand operating nature. Concerning the scalability aspect of semiconductor quantum dots, it is advantageous to develop a simple, yet robust method to generate photon states from it. Chirped pulse excitation has been widely demonstrated as a robust and efficient state preparation scheme in quantum dots, thereby boosting its applicability as a stable photon source in a real-world scenario. Despite the rapid growth and advancements in laser technologies, the generation and control of chirped laser pulses can be demanding. Here, an overview of a selected few approaches is presented to tailor and characterize chirped pulses for the efficient excitation of a quantum dot source. By taking the chirped-pulse-induced adiabatic rapid passage process in quantum dot as an example, numerical design examples are presented along with experimental advantages and challenges in each method and conclude with an outlook on future perspectives.
    University Bibliography Jena:
    fsu_mods_00009894External link
  2. Avoiding the tip: spiral optics for robust high power beam shaping of Bessel beams

    Year of publicationPublished in:Optics Express M. Siems, J. Thomas, H. Gross, A. Schöneberg, S. Nolte
    Bessel Gaussian beams offer unique possibilities in material processing due to their elongated high-intensity line foci. They are usually created using an axicon. Being used with high power, the most critical part of the axicon is its tip, as it is prone to laser-induced damage. Any imperfection of the tip can be the source of aberrations of the focus. Therefore, we propose to apply Laguerre Gaussian beam shaping to circumvent the tip of the axicon altogether. We introduce an optical system consisting of spiral phase plates and an axicon to combine Laguerre and Bessel Gaussian beam shaping. This system is experimentally implemented using custom-made spiral phase plates and a large angle axicon. We characterize and finally apply the system to glass cutting and demonstrate the cleaving of a 2 mm thick glass sample, which results in a high-quality breaking edge with sub-micron roughness.
    University Bibliography Jena:
    fsu_mods_00023856External link
  3. Quantum key distribution implemented with d-level time-bin entangled photons

    Year of publicationPublished in:Nature Communications H. Yu, S. Sciara, M. Chemnitz, N. Montaut, B. Crockett, B. Fischer, R. Helsten, B. Wetzel, T. Goebel, R. Krämer, B. Little, S. Chu, S. Nolte, Z. Wang, J. Azaña, W. Munro, D. Moss, R. Morandotti
    High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing. As well, increasing the number of time bins per photon state typically requires decreasing the repetition rate of the system, affecting in turn the effective qudit rates. Here, we demonstrate a fiber-pigtailed, integrated photonic platform enabling the generation and processing of picosecond-spaced time-bin entangled qudits in the telecommunication C band via an on-chip interferometry system. We experimentally demonstrate the Bennett-Brassard-Mermin 1992 quantum key distribution protocol with time-bin entangled qudits and extend it over a 60 km-long optical fiber link, by showing dimensionality scaling without sacrificing the repetition rate. Our approach enables the manipulation of time-bin entangled qudits at processing speeds typical of standard telecommunications (10 s of GHz) with high quantum information capacity per single frequency channel, representing an important step towards an efficient implementation of high-data rate quantum communications in standard, multi-user optical fiber networks.
    University Bibliography Jena:
    fsu_mods_00019081External link
  4. Ultrafast laser micromachining using wavelengths from ∼ 0.2 µm to ∼ 2 µm

    Year of publicationPublished in:Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXV: 26–29 January 2025 San Francisco, California, United States D. Flamm, M. Sailer, D. Grossmann, S. Rübling, D. Decker, C. Gaida, M. Blothe, D. Sutter, S. Nolte
  5. Large-Scale Interlaboratory Study Along the Entire Process Chain of Laser Powder Bed Fusion: Bridging Variability, Standards, and Optimization across Metals and Polymers

    Year of publicationStatusReview pendingPublished in:Advanced Engineering Materials I. Kuşoğlu, S. Garg, A. Abel, P. Balachandran, S. Barcikowski, L. Becker, J. Bernsmann, J. Boseila, C. Broeckmann, M. Coskun, M. Dreyer, M. East, M. Easton, N. Ellendt, S. Gann, B. Gökce, M. Goßling, J. Greiner, P. Gruber, M. Grünewald, K. Gurung, N. Hantke, F. Hengsbach, H. Holländer, B. Van Hooreweder, K. Hoyer, Y. Huang, F. Huber, O. Kessler, B. Kısasöz, S. Kleszczynski, E. Koc, T. Kurzynowski, A. Kwade, S. Leupold, D. Liu, F. Lomo, A. Lüddecke, G. Luinstra, D. Mauchline, F. Meyer, L. Meyer, P. Middendorf, S. Nolte, M. Olejarczyk, L. Overmeyer, A. Pich, S. Platt, F. Radtke, R. Ramm, S. Rittinghaus, R. Rothfelder, J. Rudloff, M. Schaper, M. Scheck, J. Schleifenbaum, M. Schmidt, J. Sehrt, Y. Shabanga, A. Sommereyns, R. Steuer, L. Tisha, A. Toenjes, C. Tuck, A. Vaghar, B. Vrancken, Z. Wang, S. Weber, J. Wegner, B. Xu, Y. Yang, D. Zhang, E. Zhuravlev, A. Ziefuss
  6. Optical dispersion in twisted anisotropic materials

    Year of publicationStatusReview pendingPublished in:Journal of the Optical Society of America A: Optics and Image Science, and Vision S. Arumugam, C. Jisha, A. Alberucci, S. Nolte
  7. Comparative Study of Experimental Methods for Measuring Thermal Properties of 100Cr6 Steel Powders

    Year of publicationStatusReview pendingPublished in:Advanced Engineering Materials J. Zhuo, H. Kohl, D. Liu, L. Matthäus, A. Bochmann, A. Berger, S. Weber, S. Nolte, S. Lippmann
  8. Shaping the spectral response of ultrashort pulse phase mask written fiber Bragg gratings

    Year of publicationStatusReview pendingPublished in:Optics Express R. Krämer, C. Schmittner, T. Ullsperger, M. Siems, S. Döpfner, G. Schwartz, D. Richter, S. Nolte
  9. Second harmonic generation in iridium and iridium/Al₂O₃ heterostructure coatings

    Year of publicationStatusReview pendingPublished in:Optical Materials Express P. Paul, R. Rafi, S. Beer, O. Ghaebi, S. Klimmer, G. Soavi, S. Nolte, S. Schröder, A. Tünnermann, A. Szeghalmi
  10. Quantum Optics Applications of Hexagonal Boron Nitride Defects

    Year of publicationPublished in:Advanced Optical Materials A. Çakan, C. Cholsuk, A. Gale, M. Kianinia, S. Paçal, S. Ateş, I. Aharonovich, M. Toth, T. Vogl
    Hexagonal boron nitride (hBN) has emerged as a compelling platform for both classical and quantum technologies. In particular, the past decade has witnessed a surge of novel ideas and developments, which may be overwhelming for newcomers to the field. This review provides an overview of the fundamental concepts and key applications of hBN, including quantum sensing, quantum key distribution, quantum computing, and quantum memory. Additionally, critical experimental and theoretical advances that have expanded the capabilities of hBN are highlighted, in a cohesive and accessible manner. The objective is to equip readers with a comprehensive understanding of the diverse applications of hBN, and provide insights into ongoing research efforts.
    University Bibliography Jena:
    fsu_mods_00020894External link
  11. Reconfigurable integrated photonic device to test Born’s rule

    Year of publicationPublished in:Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXV: 26–29 January 2025 San Francisco, California, United States G. Gualandi, J. Krause, R. Osellame, T. Vogl, G. Corrielli
  12. Photoluminescence-based gas sensing with MoS₂ monolayers

    Year of publicationStatusReview pendingPublished in:Optics Express G. Ngo, C. Cholsuk, S. Thiele, Z. Gan, A. George, J. Pezoldt, A. Turchanin, T. Vogl, F. Eilenberger
Pagination Page 1